
Endorsement of high quality standards for the molecular detection of Sars Cov-2 RNA in a Reference Laboratory in Athens, Greece

Chatzantonaki Kalliopi¹, Makri Lina¹, Papavasileiou Paraskeui¹, Pitropaki Dimitra¹, Konstantinidis Aleksandros¹, Charvalos Ekatherina^{1,2}

¹IN VITRO LABS/Molecular Diagnosis dpt, Athens, Greece

²IASO HOSPITAL/ IMRI (Iaso Medical Research and Innovation) dpt, Athens, Greece

The key role of External Quality Assurance (EQA)

Study the **efficiency of your method** in laboratory against a peer target (how close

am I to a target?)

Laboratory performance – study your self

Study the **efficiency of other methods** against the same target (which method has the highest popularity and efficiency?)

Illustration of current laboratory practices, in terms of **most commonly used** *kit manufacturer* and *genes targets* – *study others*

Two well-known External Quality Assurance Shemes, our laboratory -IN VITRO LABS- participates in

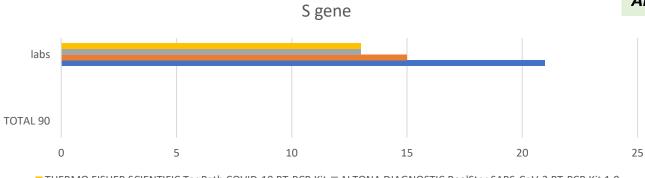
Opportunity for the analysis of almost all circulating variants in the lab – comparative results

Objective of the study

Efficiency

 ✓ efficiency of combined use of commercial RT-PCR

Interferences


 ✓ Factors may dynamically interfere with an analytical RealTime PCR result (Ct), are there any possible interactions?

Preferences

 ✓ preference of the laboratories, in terms of most commonly used kit manufacturer and genes targets

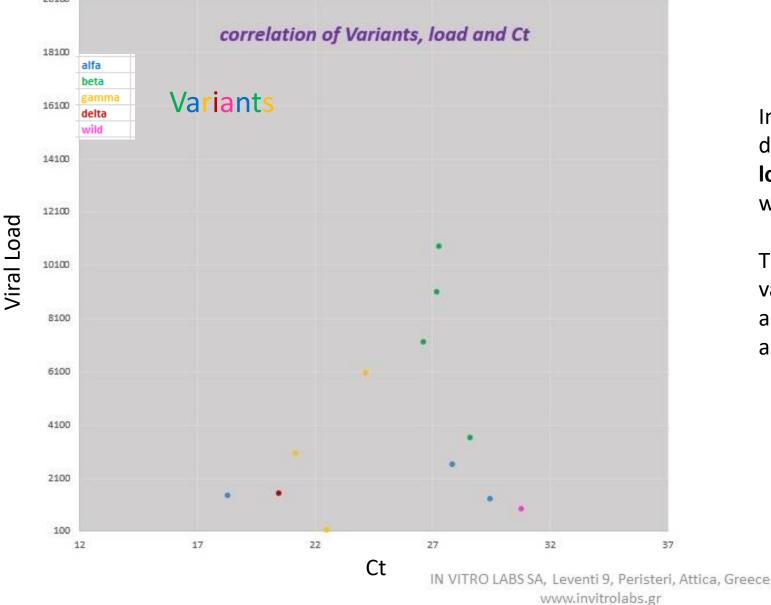
Efficiency

- There is evidence that some SARS Variants may present S gene dropout, leading to false negative results as regards the analysis of S gene, whereas certain PCR kit may be more susceptible to S gene dropout compared to others.
- In order to overcome this problem our laboratory uses combined analysis of S gene along with RdRp in the same fluorescent channel

■ THERMO FISHER SCIENTIFIC TaqPath COVID-19 RT-PCR Kit ■ ALTONA DIAGNOSTIC RealStar SARS-CoV-2 RT-PCR Kit 1.0

SEEGENE Allplex SARS-CoV-2/FluA/FluB/ RSV Assay

DIASORIN Simplexa COVID-19 Direct Kit

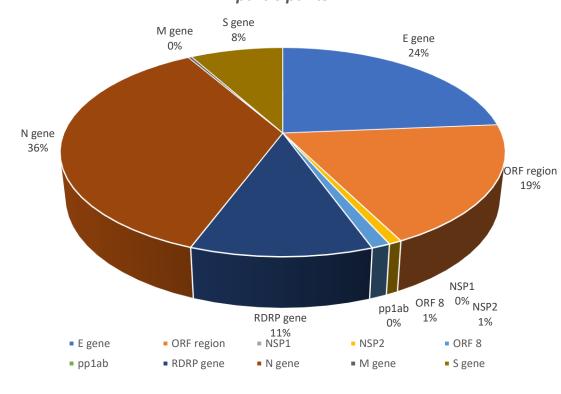

The highest rate of S gene drop out (poor efficiency) was observed with Variant *Alfa B.1.1.7*

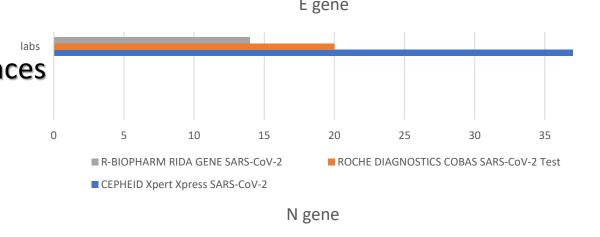
S gene Drop out				
409006	POSITIVE	B.1.1.7 Alfa		
S gene	TOTAL 81		labs	success %
ALTONA DIAGNOSTIC RealStar SARS-CoV-2 RT-PCR Kit 1.0			18	
DIASORIN Simplexa COVID-19 Direct Kit			17	88.24%
THERMO FISHER SCIENTIFIC TaqPath COVID-19 RT-PCR Kit			14	0.00%
SEEGENE Allplex SARS-CoV-2/FluA/FluB/ RSV Assay				

S gene Drop out				
409018	POSITIVE	B.1.1.7 Alfa		
S gene	TOTAL 90		labs	success %
DIASORIN Simplexa COVID-19 Direct Kit			21	95.40%
SEEGENE Allplex SARS-CoV-2/FluA/FluB/ RSV Assay			15	93.33%
ALTONA DIAGNOSTIC RealStar SARS-CoV-2 RT-PCR Kit 1.0			13	
THERMO FISHER SCIENTIFIC TaqPath COVID-19 RT-PCR Kit				15.38%

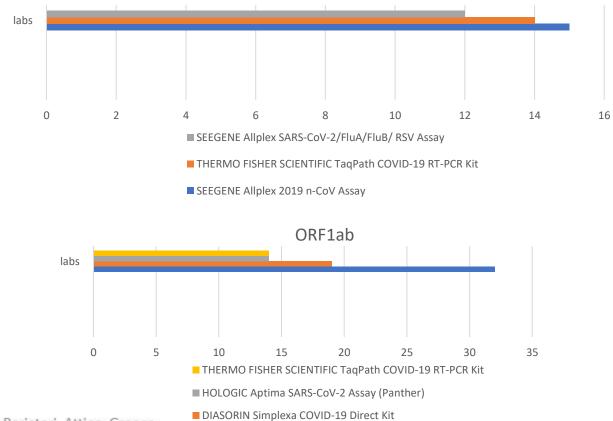
Kit preferences in terms of S gene analysis

Interferences




In the current analysis it appears that when different variants **with same level of viral load**, are analyzed for the same gene target, we might be leaded to different Ct values.

There are some thoughts that circulating variants might present different behavior in a given analytical procedure while this assumption remains under investigation.


E gene

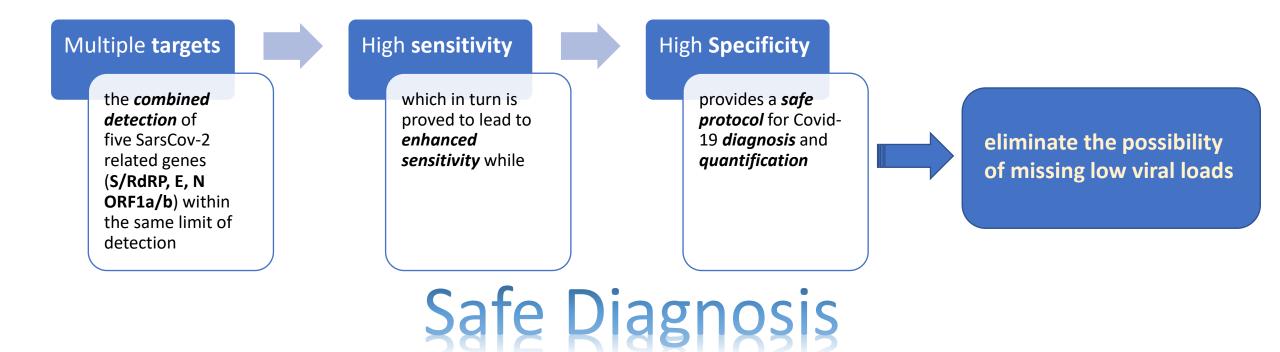
Gene target analysis percentage according to laboratory participants

40

IN VITRO LABS SA, Leventi 9, Peristeri, Attica, Greece www.invitrolabs.gr

ROCHE DIAGNOSTICS COBAS SARS-CoV-2 Test

Conclusions and thoughts


The main result was that a given **cycle cutoff** (Ct) should be **interpreted with care**

and in tandem with the current stage of the pandemic as it **may not always** be directly **connected** with the **viral load**

Quality standards for the molecular detection of Sars Cov-2 RNA in our Laboratory

With a strong commitment to Quality, our laboratory's current Quality Assurance Practice follows:

Thank you for your attention